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Computer Model  

R. A. MacDonald  2 

of a Porous Medium 1 

A computer model has been set up to represent a porous medium. The basis for 
this model is a two-dimensional square network (100 x 100) of channels that 
have randomly assigned widths between the value of zero (closed) and the value 
of one (open, unrestricted flow). The channel width assignments have been 
made by a random selection from five different distributions: f(q)=q, 
f(q) = sin q, f(q) = erf(q), f(q) = 1 - sin q, and f (q )  = 1 - eft(q). Diffusion of par- 
ticles in the network has been studied by a random-walk procedure for each 
realization of the channel width assignments. The diffusivity is quite sensitive to 
the distribution of channel widths. The percolation properties of the networks 
obtained from the three most restrictive distributions have been investigated and 
the independent, linked clusters within the network have been determined. For 
cluster sizes that are less than the full width of the network, the network does 
not percolate and either the flow is not diffusive or the diffusivity is severely 
reduced. An approximate value for the percolation threshold has been deter- 
mined in each case and the fractal dimension has been calculated also. 

KEY WORDS: clusters; diffusivity; fractal dimension; percolation threshold; 
porous model; random channel widths; random walk. 

1. I N T R O D U C T I O N  

The field of porous media is attracting considerable attention from many 
areas of current interest such as enhanced oil recovery, nuclear and toxic 
waste storage, and filtration in environmental and biological systems, to 
name but a few. In view of the great variability of the medium, e.g., rock, 
for even one particular problem, experimental endeavors are necessarily 
inadequate and the need for predictive models is urgent. 
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All the above-mentioned problems involve transport of material 
through a porous medium, and therefore, the method of molecular 
dynamical modeling suggests itself as a means of pursuing such 
investigations. To this end a model system must be set up that has the 
essential features of a porous medium, such as geometrical irregularity and 
connectivity, and its characteristics must be determined. This first step is 
the work described in this paper. For testing purposes, the model is set up 
in two dimensions. The extension to three dimensions is straightforward. 

For five different irregular two-dimensional networks, the diffusivity 
has been determined by carrying out random walks on the network. An 
approximate percolation threshold has been obtained for three of these 
networks. For insight into the flow characteristics of the model, we have 
also determined the independent clusters in each network. Further, in view 
of evidence for porous media having fractal character over some length 
scale, we have estimated the fractal dimension from calculations of the 
radius of gyration of the clusters. 

2. MODEL 

A two-dimensional square network (100 • 100) is used as the basis for 
the model porous medium, the bonds in this network representing flow 
channels. An irregular structure is obtained by selecting channel width 
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Fig. 1. P r o b a b i l i t y  f u n c t i o n s ,  f(q). f(q)=q, 
f(q)=sinq, --;  f(q)=erf(q), - - - - - - ; , f ( q ) = l - s i n q ,  
-- . - -;  f(q) = 1 - e r f ( q ) ,  - - - - -  
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assignments from a distribution, f(q), of random numbers, q. The channel 
is blocked when f ( q ) = 0  and is fully open when f ( q ) =  1. Irregular 
networks having a wide range of diffusivity have been realized by use of the 
distributions, (1)f(q)=q, (2)f(q)=sinq, (3)f(q)=erf(q), ( 4 ) f ( q ) =  
1 - s i n  q, and ( 5 ) f ( q ) =  1 -  eft(q), where eft(q) is the error function. These 
functions are shown in Fig. 1. Clearly, f(q) = q yields a uniform distribution 
of channel widths, whereas for functions (2) and (3) the channel widths are 
weighted toward higher values and for functions (4) and (5) they are 
weighted toward lower values. 

In order to determine the percolation threshold for each f(q), a cutoff 
parameter, f~, has been introduced such that all channel widths less than f~ 
are set to zero. The value of f,  is then increased, step by step, until at 
f~ =fp,  there is no significant diffusion. 

3. CALCULATIONS 

3.1. Diffusion 

A random walk on each network has been carried out in the following 
way. (i) A random number determines which of the four possible directions 
( + x, _+ y) will be considered by the walker at position (i, j). If 0 < q ~< 0.25, 
we consider the x direction; if 0.25 < q ~< 0.50, the y direction; and so on. 
(ii) The random number is appropriately scaled and compared with the 
channel width in the selected direction. For example, if 0.25 < q ~< 0.50, then 
q'= ( q - 0 . 2 5 ) x 4 ,  and q' is compared with the channel width in the 
y direction. If the channel width is greater than q', the walker moves to the 
new position, (i, j + 1) in this example; otherwise, another random number 
is called and the process is repeated. 

The mean square distance, ( r2) ,  moved by a random walker on the 
network is calculated as a function of time (i.e., the number of steps taken 
in the random walk). Periodic boundary conditions are employed. The 
diffusivity, D, is given by the relation 

( r  2) =Dt (1) 

For the present calculation, adequate statistics obtain when all 10,000 
network sites are used as the origin for a walker. In most cases, diffusion is 
established in less than 10,000 steps, but longer walks are necessary near 
the percolation threshold, where the diffusivity is very low. 
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3.2. Clusters 

In a porous medium, the flow properties depend on the connectivity of 
the network, not just on the pore volume. For this reason, it is of interest 
to examine the networks we have generated for independent clusters of 
linked points. Those which extend across the full width of the network 
allow for flow; those from which a walker cannot escape are the so-called 
"dead ends." These dead-end clusters are ineffective in contributing to flow 
and are excluded from further consideration when dealing with a particular 
dynamical problem. Their presence gives rise to the phenomenological 
concept of "tortuosity," which describes the degree of difficulty in moving 
from one point to another in a medium of given porosity. Estimates of 
the tortuosity, 6, can be obtained from our results according to the 
relation [ 1 ], 

De = Do/~ (2) 

where De is the diffusivity in the network of porosity, r and D O is the 
diffusivity when fi is zero. The porosity is determined by the fraction of 
accessible sites in the network. 

Another reason for interest in the independent clusters is that they 
provide a means of investigating the fractal character of the network. Once 
the clusters are defined, their radius of gyration, Rg, can be calculated and 
the fractal dimension, d, estimated from the relation [2] 

In N = d l n  Rg (3) 

Values of d less than 2 indicate that the network does have a fractal 
character, at least over a length scale less than L, the total width of the 
network. 

4. RESULTS 

4.1. Diffusion 

In Fig. 2, we show the results obtained for the average square distance 
moved, (r2) ,  as a function of time, t, for all five networks. The networks 
are numbered (1)-(5), according to the distribution, f(q), used to generate 
them (see Section 2). The diffusivity calculated for each case is listed in 
Table I in units of (network spacing)2/step. The values, NT, given in this 
table are the duration of the walk in units of 1000 steps. The maximum 
distance moved by a walker, rma x (in units of network spacing), is also 
listed in Table I. Although we have investigated the percolation properties 
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Fig. 2. Average square distance moved, ( r2 ) ,  versus 
time, t, for all networks. Network (1), ; 
network (2), - - - ;  network (3), - - - -  ; network (4), 
- - - - - ;  network (5), - - - - - .  In all figures, distances are 
in units of network spacing and time is the number  of 
random-walk steps. 

Table I. Diffusivity and Parameters Characterizing Network 

Network fl D .  103 N T  6 fb d rma x 

(1) 0 386 4 131.83 
0.4 120 8 3.21 0.95 106.21 
0.5 240 12 15.4 0.66 1.91 78.31 
0.55 1.14 40 340 0.00 1.63 65.77 
0.6 0.065 12 5940 0.00 1.65 26.96 

(2) 0 543 4 148.48 

(3) 0 780 4 164.50 

(4) 0 213 4 93.06 
0.3 8.78 20 24.3 0.34 1.70 79.98 
0.35 1.86 20 115 0.00 1.80 68.03 
0.4 0.058 20 3670 0.00 1.73 28.07 

(5) 0 10.8 4 29.16 
0.015 2 41 20 4.48 0.33 1.62 47.07 
0.02 1.59 15 6.79 0.00 1.80 42.45 
0.025 0.854 15 1.26 0.00 30.48 
0.035 0.199 20 54.2 0.00 1.67 23.08 
0.04 O. 173 20 62.5 0.00 21.40 
0.05 0.0391 20 276 0.00 1.55 18.87 
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Fig. 3. Average square distance moved, ( r  2) versus 
time, t, for network (4): fl=0.30, ; f1=0.35, - - - ;  
f~ = 0.40, - - - - - -  

of networks (1), (4), and (5), because of space limitations, we now focus on 
network (4). 

For  a regular square lattice with bond percolation, the percolation 
threshold is fp=0 .5 .  Therefore, we expect the threshold value for 
network(4) to be, by reference to Fig. 1, close to f (0 .5 )=0 .3 .  Figure3 
shows (r 2) versus t for three values off1 for network (4): f l=0 .30 ,  0.35, 
and 0.40. The slope is quite small for fl  = 0.35, and we take this to be the 
approximate threshold value, fp. For networks (1) and (5), f p=0 .55  and 
0.02, respectively. The diffusivity values for these cases and for several other 
values off l  in networks (1) and (5) are given in Table I. 

4.2. Clusters 

In each of the cases listed in Table I, the independent linked clusters 
have been determined. In Fig. 4, we show the results for network (4), 
f~ = 0.35. For the sake of clarity, we have plotted only those clusters con- 
taining more than Nmi  n p a r t i c l e s  ]-Nmi n = 80 for network (4)]. One cluster 
is almost large enough to span the full width, L, of the network, giving a 
small but nonzero diffusivity on the time scale of our calculations. Clearly, 
this network is very close to the percolation threshold. 
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Fig. 4. Clusters for network (4):f~=0.35, Nmin=80. 

4.3. Fractal Dimension 

The radius of gyration, Rg, has been calculated for each cluster. Then, 
for each network, the logarithm of the number of points in a cluster, In N, 
is plotted against In R~. Figure 5 shows one such plot [-for network (4), 
f~ = 0.35]. The fractal dimension, obtained from the slope of these plots 
according to Eq. (3), is listed in Table I. In all cases, the slope is less 
than 2. In spite of the limited statistics, we conclude that there is some 
fractal character present in all these networks. Since percolation theory 
gives a value of 1.896 for the fractal dimension of a two-dimensional lattice 
at the percolation threshold [2], the lower values that we obtain indicate 
that those networks are below the percolation threshold. 

4.4. Porosity and Tortuosity 

In the networks that we have generated, one measure of the porosity is 
the fraction of bond widths that are set to zero, since this limits the 
accessibility of the sites. However, in measurements of porosity, it is the 
connected portions of the network that are important. Therefore, a better 
estimate of r is given by the fraction of sites that are in clusters spanning 
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Fig. 5. Logarithmic plot of number of points in 
clusters v radius of gyration: network (4), f~ = 0.35. 

the network. With this definition, ~b will be zero if there are no clusters 
large enough to span the network. The values obtained for ~b are given in 
Table I. 

As an additional descriptor of the system, the tortuosity parameter, 6, 
has been introduced to quantify the topological differences between 
networks with the same porosity. The tortuosity is related to the diffusivity 
according to Eq. (2). Values for 6, thus obtained, are also given in Table I. 

5. SUMMARY 

We have set up a model that has the essential features of a porous 
medium, i.e., it is an irregular network of connected pathways and dead- 
end regions. The model is characterized by the distribution function, f(q), 
that is used to assign channel widths and by the number of blocked chan- 
nels in the network (determined by the parameter, f~). The diffusivity has 
been calculated for each combination If(q),  fl] .  In later work, fl will be 
used to control the size of particles that can pass through the network. 

We have also investigated the topological features of the model by 
determining the linked clusters of points in each network. Flow can occur 
when a cluster spans the whole width of the network. 
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We have also determined the fractal dimension in each case and we 
conclude that  the networks do, indeed, have some fractal character over 
the range, 100 lattice spacings, of our  two-dimensional  system. 
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